Страница 7

ж) Из 12 человек нужно составить 2 волейбольные команды по 6 человек в каждой. Сколькими способами это может быть сделано?

II. Докажите следующее свойство сочетаний:

+++…+=2n.

а) Возьмите множество М={а, b, с} из трех элементов и составьте k-элементные подмножества М /k=0, 1, 2, 3/.

Каждому подмножеству поставьте в соответствие последовательность из трех цифр – единиц и нулей – следующим образом: каждому из трех элементов а, b, с поставьте в соответствие 1, если он входит в подмножество, 0 – если он в подмножество не входит. Рассмотрите таблицу

Таблица 1.

Виды подмножеств

Число подмнож.

Подмножества

Последовательности из 1 и 0

Пустые

Æ

000

Одноэлементные

{a}, {b}, {c}

100, 010 ,001

Двухэлементные

{ab}, {ac}, {bc}

110, 101 ,011

Трехэлементные

{a, b, c}|

111

Число всех подмножеств множества М равно +++ и равно числу всех последовательностей длины три из единиц и нулей. Число таких последовательностей нетрудно подсчитать: каждое из трех мест в последовательности может быть занято 1 или 0, то есть двумя способами, а все три места – по принципу умножения – 2×2×2=23 способами. Это число можно получить и по формуле подсчета числа размещений с повторением, таким образом, +++=23.

б) Проведите аналогичные рассуждения для множества из n элементов. Тогда какие изменения следует внести в таблицу? Сделайте вывод, результат запишите.

Занятие №9. Свойство сочетаний =+ и треугольник Паскаля.

I. Для изучения следующего свойства сочетаний предварительно составим трехэлементные подмножества множества М={а, б, в, г, д}. Затем выберем из множества М любой элемент, например, «а» и разобьем все подмножества на два класса: не содержащие «а» и содержащие «а».

I класс: {б, в, г}, {б, в, д}, {б, г, д}, {в, г, д}

II класс: {а, б, в}, {а, б, г}, {а, б, д}, {а, в, г},

{а, в, д}, {а, г, д}.

Первый класс состоит из всевозможных сочетаний без повторений по три элемента из следующих четырех: б, в, г, д. Таких сочетаний . Каждое подмножество второго класса состоит из элемента «а» и двух элементов, выбираемых из множества следующих элементов: б, в, г, д. Очевидно, число таких подмножеств равно .

Страницы: 2 3 4 5 6 7 8 9 10 11 12