24.Сколько различных предсказаний о распределении 3 трудовых мест можно сделать, если в соревновании принимают участие 10 человек?
25.Сколькими способами можно выбрать 4 числа из 10?
26.В турнире по шахматам каждый участник сыграл с каждым по одной партии, всего было сыграно 36 партий. Определите число участников турнира.
27.В классе имеется 6 сильных математиков. Сколькими способами из них можно составить команду на районную олимпиаду по математике, если от класса можно послать команду от 2 до 4 человек?
28.Сколько различных направлений задают на плоскости вершины треугольника?
29.Из колоды в 36 карт наугад выбирают 2 карты. Сколько возможно случаев, в которых обе карты окажутся тузами?
Занятие №12. Комбинаторика вокруг нас.
К данному итоговому занятию каждый из учащихся должен подготовить проект на тему «Приложения комбинаторики» (в химии, астрономии, геометрии, физике, биологии, теории вероятности, логике, программировании). Это могут быть доклады, сообщения, сопровождающиеся наглядностью, презентации и прочие. Учащиеся могут пользоваться любыми ресурсами, в том числе электронными. Можно им порекомендовать книгу.
Раздел 2. Элементы теории вероятности.
Этот раздел элективного курса представляет собой чрезвычайно яркую, интересную и своеобразную область математики.
Изучение материала сопровождается рассмотрением разнообразных игровых и жизненно интересных примеров с непредсказуемым однозначным результатом. Рассмотрение случайных событий, некоторые трудности психологического характера, вызываемые необычностью объектов изучения, делают курс непростым для усвоения.
Занятие №1. Предмет теории вероятностей. События.
На вводном занятии надо рассказать учащимся о возникновении теории вероятности, об ученых, стоящих у ее истоков. Причем, по мере рассказа учителя, учащиеся могут делать доклады по биографии упомянутых ученых. Темы доклады нужно распределить заранее.
В обыденной жизни, давая какие-либо прогнозы, мы нередко употребляем выражения «вероятность», «вероятно». Например, мы говорим: «Вероятно, сегодня вечером будет дождь». Причём мы отдаём себе отчёт, в каких событиях «мало» вероятности, в каких – «много».
Французский естествоиспытатель Ж.Л.Л. Бюффон в XVIII столетии подбрасывал монету 4040 раз – герб выпал 2048 раз. Математик К. Пирсон в нале прошлого века подбрасывал её 24000 раз – герб выпал 12012 раз. В 70-х г.г. XX века американские естествоиспытатели повторили опыт. При 10000 подбрасываниях герб выпал 4979 раз. Значит, результаты бросаний монеты, хотя каждое из них и является случайным событием, при неоднократном повторении подвластны объективному закону.
Теория вероятностей и изучает закономерности, управляющие массовыми случайными событиями.
С случайными событиями (или явлениями), то есть с такими, которые могут либо произойти, либо не произойти в результате какого-то испытания, мы встречаемся в жизни очень часто.
Ученик извлекает билет – это испытание. Появление при этом билета №13 – случайное событие, билета №5 – другое случайное событие. Выбор наугад какой-то страницы в книге – это испытание. То, что первой буквой на этой странице окажется «м» – это случайное событие.
Например, рассмотрим следующие события:
№№ |
Условие |
Исход |
А1 |
При нагревании проволоки |
её длина увеличится |
А2 |
При бросании игральной кости |
выпадут 4 очка |
А3 |
При бросании монеты |
выпадет герб |
А4 |
При осмотре почтового ящика |
найдены три письма |
А5 |
При низкой температуре |
вода превратилась в лёд |