Страница 12

Саша: Следующим обязательно будет № 23.

Маша: Возможно, что следующим будет № 23.

Кристина: Возможно, что следующим будет № 13.

Катя: Невозможно, что следующим будет № 5.

С кем из ребят вы согласны, а с кем нет? Объясните сделанный выбор.

9. На дорогу от дома до школы Миша тратит от 10 до 15 минут, если идёт пешком, и от 2 до 3 минут, если едет на автобусе. При каких интервалах движения автобусов событие А=={по пути в школу Мишу обгонит хотя бы один автобус} будет невозможным, при каких – случайным, при каких – достоверным?

После знакомства с понятием «случайное событие» учащиеся должны уметь приводить примеры таких событий из жизни и отличать их от неслучайных.

Занятие №2. Виды случайных событий.

События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае события называются совместными.

Например, события «пошел дождь» и «наступило утро» являются совместными, а события «наступило утро» и «наступила ночь» - несовместными.

Задачи:

1. В сыгранной Катей и Ларисой партии в шахматы определить совместные и несовместные события, если: 1) Катя выиграла, Лариса проиграла; 2) Катя проиграла, Лариса проиграла.

2. Из событий: 1) «идёт дождь»; 2) «на небе нет ни облака»; 3) «наступило лето» - составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий.

3. Из событий: 1) «наступило утро»; 2) «сегодня по расписанию 6 уроков»; 3) «сегодня 1 января»; 4) «температура воздуха в Мариинске +30°С» - составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий.

События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

Например, «выпадение герба» и «выпадение цифры» при бросании монеты – равновозможные события. «Изъятие из набора домино дубля» и «изъятие из набора домино костяшки с разными очками» - неравновозможные события, так как дублей в наборе домино всего 7, а остальных костяшек 21.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них.

Например, попадание и промах при выстреле; появление 1, 2, 3, 4, 5, 6 очков при бросании игральной кости.

Если два единственно возможных события образуют полную группу, то их называют противоположными (выигрыш и не выигрыш, попадание и промах). Если одно из двух противоположных событий обозначено через А, то другое принято обозначать .

Задачи:

1. Ниже перечислены разные события. Укажите противоположные им события.

а) Мою новую соседку по парте зовут или Таня, или Аня.

б) Из пяти выстрелов в цель попали хотя бы два.

в) На контрольной работе я не решил, как минимум, три задачи из пяти.

2. Назовите событие, для которого противоположным является такое событие:

а) на контрольной работе больше половины класса получили пятёрки;

б) все семь пулек в тире у меня попали мимо цели;

в) в нашем классе все умные и красивые;

г) в кошельке у меня есть три рубля одной монетой, или три доллара одной бумажкой.

Рассматривая события как множества, можно определить действия над событиями. (Введение понятий суммы и произведения событий позволяет подготовить действия над вероятностями).

a) Объединение событий или сумма событий - AÈB или А+В - событие, содержащее все элементы А и В.

Пример 1.

Испытание: бросаем игральную кость.

Событие А: выпало четное число очков.

Событие B: выпало число очков меньше, чем 4.

Событие A+B: выпало 1, 2, 3, 4 или 6 очков.

Рисунок к примеру 4Пример 2.

Событие А: круг.

Событие B: квадрат.

Событие A+B: заштриховано.

b) Пересечение событий или произведение событий - AÇB или АВ - событие, содержащее только общие элементы А и В.

Пример 3.

Испытание: бросаем игральную кость.

Событие А: выпало четное число очков.

Событие B: выпало число очков меньше, чем 4.

Рисунок к примерам 6 и 8Событие AB: выпало 2 очка.

Страницы: 7 8 9 10 11 12 13 14 15 16 17