Страница 8

4. В данном учебнике выводится формула для нахождения объема наклонного параллелепипеда.

Объем прямого цилиндра

В пункте 26.1 высказаны наглядные соображения, «доказательство математического утверждения с точки зрения физики». С учетом уровня класса можно предположить несколько вариантов дальнейших событий:

а) этим и ограничиться;

б) предложить желающим разобрать пункт 26.2 самостоятельно и ответить индивидуально на оценку;

в) предложить отдельным учащимся сделать сообщение о теореме на уроке. (Для этого теорему можно разбить на 4-5 частей);

г) предложить учащимся разобраться в теореме самостоятельно, а учитель организует по ней семинар в классе;

д) доказать теорему и попросить повторить «сильных» учеников на следующем уроке. И т. д.

Представление объема интегралом

С точки зрения методической представляется более удобным дать формулировку теоремы после доказательства, а сам вывод разбить на четыре части, примерно соответствующие бытовавшему когда-то алгоритму вывода формул и теорем дифференцирования:

1) х; 2) V; 3) ; 4) V’(x).

Первый способ рассуждения в теореме более аналитичен, а второй наглядный, и здесь можно «задействовать» теорему о сжатой переменной.

Объемы некоторых тел

Содержание параграфа – независимый вывод формул объемов четырех конкретных видов тел. При желании этот набор можно дополнить выводом формул объемов усеченного конуса (пирамиды) и шарового сегмента. Это позволяет провести с учениками групповую работу. Схема проведения таких работ состоит из нескольких этапов.

I

этап

. Класс разбивается на группы по шесть человек. Каждому участнику группы дается задание изучить вывод одной из формул (естественно, задания всем в группе различные). Четыре ученика учат пункты § 27, а двое получают от учителя тексты, где выводятся формулы объемов усеченного конуса и шарового сегмента. (Учитель может заменить их другими формулами или вообще не давать других формул, но тогда группа уменьшается до четырех человек и меняется время дальнейшей работы.) Изучив соответствующую теорему, ученик записывает ее в конспект и отыскивает ученика из своей группы, также закончившего запись. Они рассказывают друг другу каждый свою теорему, записывая коротко вывод в конспекте. После этого каждый из них задает вопросы другому и отвечает на его вопросы. После этого пара «распадается», и каждый снова ищет свободного участника своей группы и т. д. На все это уходит два часа. На дом ученики получают задание вывести оставшиеся формулы.

II этап.

Продолжается работа в тех же группах (это уже следующий урок геометрии). Однако правила меняются. Теперь каждый получает задание спрашивать вывод какой-то одной из шести формул объема и отвечает спрашиваемому соответственно одну из четырех формул (кроме той, что объяснял на том уроке, и той, что сам спрашивает). За ответ он ставит оценку. На это уходит 1 час.

III этап

. И наконец, учитель может на следующем (уже четвертом) уроке вызвать по 1-2 представителя от каждой группы, чтобы по жребию ответить у доски одну из теорем (можно добавить и формулы из домашнего задания). Остальные группы при этом слушают, рецензируют, задают вопросы, добавляют. В итоге каждый ученик оценивается по четырем позициям: 1) запись в конспекте, 2) оценка при ответе товарищу, 3) ответ представителя из группы, 4) качество вопросов и рецензий.

Элемент случайности приносит дополнительную ответственность, игровой момент и компенсируется остальными составляющими оценки [22].

Страницы: 3 4 5 6 7 8