4.Основанием прямой призмы служит треугольник со сторонами 10, 10, 12. Диагональ меньшей боковой грани составляет с плоскостью основания угол 600. найдите объем призмы.
а) 480; б) 960; в) 240; г) 480; д) 240.
Тест (объем пирамиды)
1.Объем правильного тетраэдра равен 9 см3. Найдите его ребро.
а) 4 см; б) 2 см; в) 3 см; г) 6 см; д) 3 см.
2.Выберите неверное утверждение.
а) объем пирамиды равен произведению одной третьей площади основания на высоту;
б) объем правильного тетраэдра вычисляется по формуле , где а – ребро тетраэдра;
в) объем усеченной пирамиды, высота которой равна h, а площади основания равны S и M, вычисляется по формуле
г) объем правильной треугольной пирамиды, ребро которой равно а и все боковые ребра наклонены к плоскости основания под углом , вычисляется по формуле ;
д) объем правильной шестиугольной пирамиды, ребро которой равно а и все боковые ребра наклонены к плоскости основания под углом , вычисляется по формуле .
3.Найдите объем усеченной пирамиды, площади оснований которой равны 3 см2 и 12 см2, а высота равна 2 см.
а) определить нельзя; б) 7 см3; в) 42 см3; г) 14 см3; д) 56 см3.
4.Основанием пирамиды МАВС служит треугольник со сторонами АВ = 5 см, ВС = 12 см, АС = 13 см. Найдите объем пирамиды, если МВАВС и МВ = 10 см.
а) 300 см3; б) 260 см3; в) 780 см3; г) определить нельзя; д) см3.
Углубленное изучение геометрии по учебнику [6]
Рассмотрим методические рекомендации для углубленного изучения темы «Объемы многогранников». В настоящее время для данного обучения в школах используют учебник [6], так как именно он рекомендован (допущен) Министерством образования и науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях. Теоретический материал учебника разбит на две части – основную и дополнительную. Основная часть содержит теоретические сведения (аксиомы, определения, теоремы); материал, в котором рассказано о значении наиболее важных геометрических результатов, о различных применениях стереометрии в других науках, технике, искусстве, быту, об истории геометрии.
В дополнительном материале с большей глубиной и подробностью обсуждаются самые трудные вопросы курса. Этот материал рассчитан на учащихся, особенно интересующихся математикой.
Глава V данного учебного пособия посвящена объемам тел многогранников. Эта глава традиционная для школьного курса геометрии. И построение ее как будто бы традиционное: сначала выработка общего понятия, затем вывод конкретных формул. Однако есть и характерные отличия.
1. Четко выясняется множество фигур, которые имеют объем в смысле данного определения.
2. Впервые в школьном курсе (и в такой формулировке) дается теорема о существовании и единственности объема.
3. Теорема о представлении объема интегралом рассмотрена с помощью наглядных соображений, так как полное доказательство «сложно и требует расширения понятия интеграла», однако рассуждение приведено тактично и не нарушает уверенности ученика в возможность доказать это утверждение.