Дополнительное задание (подготавливается учителем на карточках и предлагается учащимся):
1. По развертке, данной в масштабе, вычислить действительные площадь полной поверхности и объем: 1) правильной призмы (рис. 8); 2) правильной пирамиды (рис. 9)
2.
|
|
Указание: при выполнении в тетради чертежей пирамиды и призмы учащийся может взять произвольные размеры основных элементов.
3. Вычислить объем башни, размеры которой в метрах даны на рисунке 10.
Вывод формулы объема пирамиды в учебнике [7] рассматривается в два этапа (Приложение 7). Вначале автор предлагает рассмотреть для треугольной пирамиды, а затем – для произвольной. Автор проводит ось, рассматривает сечение плоскостью, выражает площадь сечения через площадь основания, применяет основную формулу для вычисления объемов (определенный интеграл). В доказательстве автор также использует признаки подобия. Таким образом, хорошо прослеживается связь с ранее уже изученным.
Следствием теоремы, в отличие от [8], является формула объема для усеченной пирамиды. Доказательства в данном учебнике не приведено. В учебнике [7] формулировка формулы приведена, как задача, причем автор сам задачу решает.
Мы рассмотрели основные рекомендации для изучения данной темы, которые описаны в соответствующей литературе. Но есть и другие приемы и методы, которыми практически не пользуются, но они имеют свои преимущества. Далее приведена примерная (авторская) система данных уроков.
|
Дело в том, что объемы тел – тема, вызывающая достаточно большие трудности у учащихся. В этом разделе есть четыре трудных для усвоения теоремы: 1) об объеме прямоугольного параллелепипеда; 2) об объеме пирамиды; 3) об объеме цилиндра; 4) об объеме тела, полученного вращением криволинейной трапеции [21].
Выводы формул для вычисления объема каждого вида многогранника, цилиндра, конуса проводятся разными методами, что вызывает значительные трудности при их воспроизведении.
Предлагаемая мною система изучения этого раздела устраняет недостатки и создает условия для усвоения основной идеи измерения фигур в пространстве: объем фигуры может быть найден с помощью вычисления интеграла от определенным образом заданной функции.
С целью осуществления такого подхода к измерениям пространственных фигур предлагается посвятить несколько уроков обобщению изученного ранее материала об измерении отрезков и плоских фигур (о длинах и площадях) и ввести аналогичным образом измерение пространственных фигур. Рассмотрим их содержание более подробно.
Урок 1
Тема урока: обобщение свойства длин отрезков и площадей плоских фигур.
Цель урока: повторить свойства длин отрезков и площадей фигур, провести необходимые аналогии.