Страница 3

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

.

Доказать приведенные свойства учащиеся могут самостоятельно.

Задачи:

Занятие №4. Дисперсия ДСВ.

Занятие №5. Среднее квадратическое отклонение.

Занятие №6. Метод наименьших квадратов.

Занятие №7. Зачет.

Раздел 4. Элементы математической статистики.

В рамках данного элективного курса предполагается познакомить учащихся с элементами статистики как научного направления. Прежде всего речь идет об элементах так называемой «описательной» статистики, которая занимается вопросами сбора и представления первичной статистической информации в табличной и графической формах, вычисления числовых характеристик для совокупности числовых данных.

Включение в курс начальных сведений из статистики направлено на формирование у учащихся таких важных в современном обществе умений, как понимание и интерпретация результатов статистических исследований, широко представленных в средствах массовой информации.

Занятие №1. Выборочный метод.

Статистика – это научное направление, объединяющие принципы и методы работы с числовыми данными, характеризующими массовые явления. Оно включает в себя математическую статистику, общую теорию статистики и целый ряд отраслевых статистик (статистика промышленности, статистика финансов, статистика народонаселения и другие).

Предметом математической статистики является изучение случайных величин по результатам наблюдений. Для получения опытных данных необходимо провести обследование соответствующих объектов. Например, если исследователя интересует вероятность того, что диаметр валика определенного типоразмера после шлифовки окажется за пределами технического допуска, то надо знать закон распределения этого диаметра, а для этого прежде всего нужно располагать набором возможных значений диаметра. Однако обследовать все валики зачастую трудно, поскольку их количество может быть велико. Поэтому приходится из всей совокупности объектов для обследования отбирать только часть, то есть проводить выборочное обследование. В некоторых случаях обследование объектов всей совокупности практически не имеет смысла, поскольку они разрушаются в результате обследования. Таким образом, основным методом статистики является выборочный метод.

Выборочной совокупностью или выборкой называют совокупность случайно отобранных объектов.

Генеральной совокупностью называют совокупность объектов, из которых производится выборка.

Объемом совокупности (выборочной или генеральной) называют число объектов этой совокупности. Например, если из 1000 деталей отобрано для обследования 100 деталей, то объем генеральной совокупности N=1000, а объем выборки n=100.

Для того, чтобы по выборке можно было достаточно уверенно судить о случайной величине, выборка должна быть представительной (репрезентативной). Репрезентативность выборки означает, что объекты выборки достаточно хорошо представляют генеральную совокупность. Заметим, что при отборе объектов могут сыграть роль личные мотивы или психологические факторы, о которых исследователь, проводящий выборку, и не подозревает. При этом, как правило, выборка не будет репрезентативной.

После того как сделана выборка, то есть получена выборочная совокупность объектов, все объекты этой совокупности обследуют по отношению к определенной случайной величине или в результате этого получают наблюдаемые данные.

Задача математической статистики заключается в обработке результатов наблюдений.

Статистическая информация и способы ее представления.

Статистическая информация – это числовые данные о массовых явлениях, это значения наблюдаемых признаков объектов, составляющих статистическую совокупность, которая получена в результате статистического наблюдения. Таким образом, источником статистической информации является реальный опыт, эксперимент, наблюдение, измерение, производимые над реальными объектами и явлениями окружающего мира. Статистика начинается с реальных данных реального опыта; этим она отличается от теории вероятностей, которая изучает математические модели реальных явлений и имеет дело лишь с мысленными (воображаемыми) экспериментами.

Страницы: 1 2 3 4 5 6 7