Страница 20

Вероятность того, что при повторных испытаниях событие А наступит m раз и не наступит n-m раз находится по формуле:

.

Вычисления по формуле Бернулли при больших значениях n и m затруднительны. В математике установлены приближенные формулы, позволяющие находить приближенные значения для Рn(m) и, что еще важнее для практики, суммы значений Рn(m), таких, что дробь (относительная частота появления события А) лежит в данных границах.

По формуле Бернулли вероятность того, что в серии из 100 подбрасываний монеты все 100 раз выпадет герб, равна , то есть примерно 10-30. Не столь мала, но все, же ничтожна вероятность того, что цифра выпадет не более 10 раз. Наиболее вероятно, что число выпадений герба будет мало отличаться от 50.

Вообще при большом числе испытаний относительная частота появления события, как правило, мало отличается от вероятности этого события. Математическую формулировку этого качественного утверждения дает принадлежащий Я. Бернулли закон больших чисел, который в уточненной П.Л. Чебышевым гласит:

Теорема. Пусть вероятность события А в испытании s равна р, и пусть проводятся серии, состоящие из n независимых повторений этого испытания. Через m обозначим число испытаний, в которых происходило событие А. Тогда для любого положительного числа e выполняется неравенство

.

Эту теорему лучше давать без доказательства по следующим причинам: во-первых, на доказательство уйдет много времени и, во-вторых, самим доказательством можно «затмить» идею закона больших чисел.

Задачи:

1. Подбрасываем монету 10 раз. Какова вероятность двукратного появления герба?

2. Вероятность того, что изделие не пройдет контроля, равна 0,125. какова вероятность того, что среди 12 изделий не будет ни одного забракованного контролером?

3. вероятность того, что расход электроэнергии в продолжение одних суток не превысит установленной нормы, равна р=0,75. Найти вероятность того, что в ближайшие 6 суток расход электроэнергии в течение 4 суток не превысит нормы.

4. С разных позиций по мишени выпускают 4 выстрела. Вероятность попадания первым выстрелом примерно 0,1, вторым – 0,2, третьим – 0,3 и четвертым – 0,4. Какова вероятность того, что все четыре выстрела - промахи?

5. Вы играете в шахматы с равным по силе партнером. Чего следует больше ожидать: трех побед в 4 партиях или пяти побед в 8 партиях?

6. Сколько раз придется бросать игральную кость, чтобы вероятнейшее число появления шестерки было бы 32?

7. Какова вероятность равенства с точностью до 0,1 при 100 опытах?

Занятие №13. Самостоятельная работа.

Изучение случайных событий желательно завершить самостоятельной работой, в которой одну-две задачи надо решить как можно большим числом способов. Неплохо включить в работу и теоретический вопрос (чтобы проверить, с одной стороны, понимание учащимися теоретической части пройденного материала и, с другой стороны, умение учащихся формулировать и излагать свои мысли).

Примерный состав самостоятельной работы:

Вариант 1

1. Среди облигаций займа 25% выигрышных. Найдите вероятность того, что из трех взятых облигаций хотя бы одна выигрышная.

2. Найти вероятность по данным вероятностям: Р(А)=а, Р(В)=b, Р(А+В)=с.

3. Могут ли несовместные события быть в то же время независимыми и наоборот? Привести примеры.

Вариант 2

1. При включении зажигания двигатель начинает работать с вероятностью р. Найти вероятность того, что для ввода двигателя на работу придется включить зажигание не более двух раз.

2. Найти вероятность по данным вероятностям: Р(А)=а, Р(В)=b, Р(А+В)=с.

3. Почему формула Бернулли применяется при независимости опытов?

Способы решения первых задач подробно изложены в методике.

Занятие №14. Кому нужна теория вероятностей?

Форма организации данного занятия – круглый стол – представление учащимися индивидуальных творческих работ по выбору:

Страницы: 15 16 17 18 19 20 21