Р(А1+А2+…+Аn)=1. (*)
Любые два события полной группы несовместны, поэтому можно применить теорему сложения:
Р(А1+А2+…+Аn)=Р(А1)+Р(А2)+…+Р(Аn). (**)
Сравнивая (*) и (**), получим
Р(А1)+Р(А2)+…+Р(Аn)=1.
Теорема 4. Сумма вероятностей противоположных событий равна 1:
Р(А)+Р()=1.
Задачи:
1. В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара.
2. На стеллаже библиотеки в случайном порядке расставлено 15 учебников, причем 5 из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете. (Решить двумя способами: с помощью 1 и 4 теорем).
3. Производится бомбометание по трем складам боеприпасов, причем сбрасывается одна бомба. Вероятность попадания в первый склад 0,01; во второй 0,008; в третий 0,025. При попадании в один из складов взрываются все три. Найти вероятность того, что склады будут взорваны.
4. Круговая мишень состоит из трех зон: I, II, III. Вероятность попадания в первую зону при одном выстреле 0,15, во вторую 0,23, в третью 0,17. найти вероятность промаха.
Занятие №9. Теорема умножения вероятностей.
Перед тем как излагать теорему умножения вероятностей необходимо ввести понятие условной вероятности. Привести учащихся к этому понятию поможет разбор примера.
Пример: Из ящика, в котором 3 белых и 3 черных шаров, наугад вынимают последовательно один за другим два шара. Какова вероятность появления белого шара при втором испытании, если при первом испытании был извлечен черный шар?
Условная вероятность события В при условии, что событие А уже наступило, по определению равна
(Р(А)>0).
Опираясь на определение условной вероятности, учащиеся без труда смогут сформулировать теорему о вероятности совместного появления двух событий.
Теорема 1. Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предложении, что первое событие уже наступило:
Р(АВ)=Р(А)РА(В).
Пусть вероятность события В не зависит от появления события А.
Событие В называют независимым от события А, если появление события А не изменяет вероятности события В, то есть
РА(В)=Р(В) или РВ(А)=Р(А).
Теорема 2. Вероятность совместного появления двух независимых событий равна произведению их вероятностей:
Р(АВ)=Р(А)Р(В).
На практике о независимости событий заключают по смыслу задачи. Например, вероятности поражения цели каждым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события «первое орудие поразило цель» и «второе орудие поразило цель» независимы.
Задачи:
1. Среди ста лотерейных билетов есть 5 выигрышных. Найти вероятность того, что два наудачу выбранные билета окажутся выигрышными.
2. В коробке 9 одинаковых радиоламп, 3 из которых были в употреблении. В течение рабочего дня мастеру для ремонта аппаратуры пришлось взять две радиолампы. Какова вероятность того, что обе взятые лампы были в употреблении?
3. У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков – конусный, а второй – эллиптический?
4. Бросают два игральных кубика. Какова вероятность того, что на первом кубике выпадет четное число очков, а на втором – число, меньшее 6?
5. Имеется 3 ящика, содержащих 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.
Занятие №10. Следствия теорем сложения и умножения.
Возвращаясь к занятию №8, где теорема сложения была рассмотрена для несовместных событий, целесообразно изложить теорему сложения для совместных событий. Доказательство приводить не обязательно, надо только ее проиллюстрировать.
Теорема 1. Вероятность появления хотя бы одного из двух совместных событий равна сумме этих событий без вероятности их совместного появления:
|