Для закрепления решения этой задачи можно предложить следующую систему задач:
Точки А1 и В1 расположены на боковых ребрах куба ABCDA1 B1C1D1. Найти точку пересечения прямой (АВ) с плоскостью верхнего и нижнего основания.
Точки А1 и В1 расположены на смежных боковых гранях куба ABCDA1 B1C1D1. Найти точку пересечения прямой (АВ) с плоскостью нижнего основания.
Точки А1 и В1 расположены на двух смежных ребрах пирамиды ABCD. Найти точку пересечения прямой (АВ) с основанием пирамиды.
Даны тетраэдр ABCD и точки M и N, принадлежащие боковым граням. Постройте точку пересечения прямой MN с плоскостью ABC.
Точки Н и К расположены на соответственно на ребрах АВ и АD призмы ABCDA1B1C1D1. найти точку пересечения прямой (HF) с прямой (DC);(DD1).
Точки A1 и B1 расположены соответственно на ребрах АС и АВ пирамиды ABCD.Найти точку пересечения прямой (A1B1) с прямой (ВС).
Дана пирамида ABCDS.Найти точку пересечения прямой (AS) с прямой (ВК), где К-точка принадлежащая ребру CS.
Дана пирамида ABCDS. Найти точку пересечения прямой (АВ) с прямой (DH), где H-середина ребра BC.
Задача: Построить линию пересечения заданных проектирующих плоскостей
Рис. 6а
Пусть проектирующие плоскости заданы проектирующими прямыми АА1 и ВВ1 ТТ1 и РР1. Одной точкой линии пересечения заданных плоскостей будет точка Х1 —точка пересечения следов обеих плоскостей. В оригинале линия пересечения проектирующих плоскостей будет проектирующей прямой, как линия пересечения двух плоскостей, проведенных через параллельные (проектирующие) прямые. Следовательно, и на изображении прямая ХХ1, по которой пересекаются проектирующие плоскости, будет параллельна АА1.
Как решение этой задачи, так и всех остальных следует рассматривать через возможно большую совокупность частных случаев. Проектирующие прямые, определяющие проектирующие плоскости, могут располагаться так, что линия пересечения плоскостей будет находиться либо между одной из пар проектирующих прямых, либо между обеими парами. Проектирующие плоскости следует задавать не только одной парой проектирующих прямых, но и проектирующей прямой и точкой, лежащей в основной плоскости.
Во всех случаях решения следует связывать с построениями в оригинале. Если, например, проектирующую плоскость рассматривать как частокол с плотно примыкающими друг к другу кольями, то учащиеся должны понимать, что линия пересечения будет колом, который находится одновременно и в первой и во второй изгородях. Линию пересечения проектирующих плоскостей можно рассматривать как стык двух листов фанеры, являющихся образами проектирующих плоскостей.
Задача: Построить линию пересечения двух произвольно заданных плоскостей
Решение задачи в соответствии с выставленными принципами, понимание которых учащимся к этому моменту должно быть.подготовлено, не должно уже вызывать затруднений В одной из заданных плоскостей (рис.5), например в плоскости φ(φ1), берутся две произвольные вспомогательные прямые а(а) и в(в) и строятся точки — точки Х(Х1) и Y(Y1) — пересечения этих прямых с плоскостью β(β1). Прямая XY(X1Y1)— искомая.
Рис. 5
В повседневной практике в качестве вспомогательных прямых выбирают те, которые имеются уже на чертеже: следы плоскостей, прямые, определяемые точками, задающими плоскость. Одна точка линии пересечения плоскостей, заданных на рис. 6, определяется как точка пересечения следов плоскостей — точка Х(Х1). В качестве второй вспомогательной прямой а(а,) взята прямая, лежащая в проектирующей плоскости РP1 ТT1.