Решение. По условию PHАВС, PKВС, т.е. по теореме о трех перпендикулярах HK ВС, и PHK PBC. Так как, опять же по условию, TEРВС, то отрезок ТЕ либо параллелен плоскости РНК, либо принадлежит ей. В любом случае чертеж неверен.
4.
На рис. 4.16 изображена пирамида КАBCD. Через точку М, МАВК, провести прямую, параллельную BD.
Решение. Проведем через прямую BD и данную точку М плоскость. Она пересечет грань АВК по прямой ВЕ (ЕКА), а грань ADK по прямой ED. В построенной плоскости BED проведем через точку М прямую параллельно BD.
5.
Постройте точку пересечения прямой МН с плоскостью основания пирамиды SABCD (рис. 4.17).
6.
В основании треугольной пирамиды, боковые ребра которой равны, лежит прямоугольный треугольник (рис. 4.18). Постройте высоту пирамиды.
7.
Через точку М на плоскости α (рис. 4.19) проведена прямая, которая пересекает грань АКС пирамиды КАВС в точке Н. Какую еще грань пересечет эта прямая?
8
. Постройте многогранник, имеющий 11 ребер.
Указание. Четырехугольная пирамида имеет 8 ребер, если у нее «срезать» угол при основании, добавится 3 ребра. Всего у многогранника будет 11 ребер. [25], [26], [8], [12], [13]