Страница 3

Найдите площадь боковой поверхности пра­вильной шестиугольной призмы, если дана площадь Q большего диагонального сечения.

Решение. Площадь большего диагонального сечения (рис. 4.5) Q=2aH, aH=. Площадь боковой поверхности равна 6∙Q = 3Q.

14.

Через две неравные диагонали основания пра­вильной 6-угольной призмы проведены диагональ­ные сечения. Найдите отношение их площадей.

Решение. Отношение площадей диагональных сечений (рис. 4.5-4.6) равно отношению неравных диагоналей правильного 6-угольника, сторона ко­торого а: S1,: S2 = 2а : а= 2 :.

15.

По элементам, данным в табл. 4, найдите неизвестные элементы правильной шестиугольной призмы.

Таблица 4

а

Н

Р

Sп

4

7

6

720

5

18

20

240

12

144

16.

В правильной n-угольной призме проведена плоскость под углом 60˚ к основанию так, что она пересекает все боковые грани призмы. Площадь основания равна 50 см2. Найдите площадь сечения.

Решение. Sосн = Sсеч ∙ cos 60,

Sсе ч==100 (см 2).

17.

Дана n-угольная призма. Найти сумму вели­чин ее плоских углов.

Решение. Найдем сумму плоских углов двух оснований и всех боковых граней: 180(n - 2) ∙2 + 360n = 360n - 720 + 360n = 720(n - 1).

2)Задачи на исследование.

1.

Поставьте куб так, чтобы ни одна грань не была вертикальной. Будут ли тогда у него горизонталь­ные грани?

Ответ: нет.

2

. Можно ли куб с ребром в 7 см оклеить лис­том бумаги в виде прямоугольника шириной14 см и длиной в 21 см?

Решение. Для оклейки нужны 6 квадратов со стороной 7 см. Данный прямоугольник разрезать на два со сторонами 7 см и 21 см, а потом каж­дый из них - на три квадрата со стороной 7 см. Получим 6 нужных квадратов, которыми можно оклеить куб. ­

3.

Сколько нужно взять прямоугольников и ка­ким свойством они должны обладать, чтобы из них можно было составить прямоугольный параллеле­пипед?

Решение. Два прямоугольника для оснований со сторонами а и b, четыре прямоугольника для боковой грани. Из них два со сторонами с и а и два со сторонами с и b.

4

. Установите, прямой или наклонной является призма, у которой две смежные боковые грани пер­пендикулярны основанию.

Решение. Призма является прямой. Две смеж­ные боковые грани пересекаются по прямой, пер­пендикулярной плоскости основания. Остальные ребра параллельны данному ребру и, следователь­но, тоже перпендикулярны основанию.

5.

Исследуйте, существует ли призма, имеющая 50 ребер? 54 ребра?

Решение. Число ребер n-угольной призмы 3n, поэтому призмы, имеющей 50 ребер, не существу­ет, а 54 ребра имеет 18-угольная призма.

6.

Какой многоугольник лежит в основании призмы, если она имеет n граней?

Решение. Число сторон многоугольника, ле­жащего в основании, равно числу боковых граней призмы. Из условия следует, что это число равно n - 2, так как в призме две грани являются основа­ниями. Таким образом, в основании (n - 2)-уголь­ник.

3)Задачи на доказательство.

Страницы: 1 2 3 4 5 6 7 8