Под алгебраическим методом решения задач понимается такой метод решения, когда неизвестные величины находятся в результате решения уравнения или системы уравнений, решения неравенства или системы неравенств, составленных по условию задачи. Иногда алгебраическое решение задачи бывает очень сложным[3].
При решении задач алгебраическим методом основная мыслительная деятельность сосредотачивается на первом этапе решения задачи: на разборе условия задачи и составлении уравнений или неравенств по условию задачи.
Вторым этапом является решение составленного уравнения или системы уравнений, неравенства или системы неравенств.
Третьим важным этапом решения задач является проверка решения задачи, которая проводится по условию задачи.
При алгебраическом методе решения формируются 55 основных умений и навыков[4]:
1. Краткая запись условия задачи.
2. Изображение условия задачи с помощью рисунка.
3. Логические приёмы мышления: наблюдение и сравнение, анализ и синтез, абстрагирование и конкретизация, обобщение и ограничение, умозаключения индуктивного и дедуктивного характера и умозаключения по аналогии.
4. Выполнение арифметических действий над величинами (числами).
5. Изменение (увеличение или уменьшение) величины (числа) в несколько раз.
6. Нахождение разностного сравнения величин (чисел).
7. Нахождение кратного сравнения величин (чисел).
8. Использование свойств изменения результатов действий в зависимости от изменения компонентов.
9. Изменение (увеличение или уменьшение) величины (числа) на несколько единиц величины (числа).
10. Нахождение дроби от величины (числа).
11. Нахождение величины (числа) по данной её (его) дроби.
12. Нахождение процентов данной величины (данного числа).
13. Нахождение величины (числа) по её (его) проценту.
14. Нахождение процентного отношения двух величин (чисел).
15. Составление пропорций.
16. Понятие прямой и обратной пропорциональной зависимости величин (чисел).
17. Понятие производительности труда.
18. Определение производительности труда при совместной работе.
19. Определение части работы, выполненной в течение некоторого промежутка времени.
20. Определение скорости движения.
21. Определение пути, пройденного телом.
22. Определение времени движения тела.
23. Понятие о собственной скорости (скорости в стоячей воде) движения тела по воде.
24. Нахождение пути, пройденного двумя телами при встречном движении.
25. Нахождение скорости движения тела по течению и против течения реки.
26. Нахождение времени прохождения телом единицы пути при заданной скорости движения.
27. Нахождение скорости сближения тел, движущихся в одном направлении, и скорости удаления.
28. Нахождение скорости сближения или скорости удаления тел, движущихся в противоположных направлениях или при встречном движении.
29. Нахождение части пути, пройденного телом за определённое время, когда известно время прохождения всего пути.
30. Нахождение количества вещества, содержащегося в растворе, смеси, сплаве.
31. Нахождение концентрации, процентного содержания.
32. Нахождение стоимости товара, акции.
33. Нахождение цены товара, акции.
34. Нахождение прибыли.
35. Нахождение количества вредных веществ в воде, воздухе.
36. Нахождение себестоимости продукции.
37. Расчёт начислений банка на вклады.
38. Проверка решения задачи по условию.
39. Введение неизвестного.
40. Введение двух неизвестных.
41. Введение трёх и более неизвестных.
42. Выполнение действий сложения и вычитания неизвестных.
43. Выполнение действий умножения и деления неизвестных.
44. Запись зависимости между величинами с помощью букв и чисел.
45. Решение линейных уравнений.
46. Решение линейных неравенств.
47. Решение квадратных уравнений и неравенств.
48. Решение дробно-рациональных уравнений и неравенств.
49. Решение систем уравнений и систем неравенств.
50. Составление одного уравнения (неравенства) с двумя неизвестными.
51. Решение уравнения (неравенства) с двумя неизвестными.
52. Выбор значений неизвестных по условию задачи.
53. Составление уравнений с параметром по условию текстовой задачи.
54. Решение уравнений с параметром.
55. Исследовательская работа.
В связи с внедрением в школьную программу элементов высшей математики, с ускоренным развитием и внедрением во все сферы вычислительной математики большое значение имеет формирование у учащихся не отдельных специфических навыков, а тех умений и навыков, которые имеют дальнейшее приложение. К числу этих умений и навыков относятся умения и навыки, которые формируются в процессе решения задач алгебраическим методом.