Как по ранее действовавшей, так и по новой программе тема «Прямоугольный параллелепипед и его объем» изучается в 5 классе и увязывается с изучением законов арифметических действий. Изложение этого материала содержит максимально полное рассмотрение вопросов, связанных с первоначальными пространственными представлениями, прямоугольным параллелепипедом и понятием объема. Эксперимент, проведенный во многих школах, показал, что такое изложение темы требует 15-16 уроков, в то время, как новая программа отводит на этот материал (вместе с решением задач) несколько меньшее время. Учебник математики должен содержать полное объяснение, позволяющее учащемуся в случае необходимости (например, в случае пропуска двух-трех уроков по болезни) самостоятельно разобраться в материале по учебнику. Между тем изложение первоначального геометрического материала в наших учебниках для 5 класса традиционно является чрезмерно сжатым, практически не раскрывает все моменты элементарной геометрии. Поэтому при объяснении материала и при решении задач учитель вынужден сам давать дополнительные разъяснения.
Во-первых, учащиеся должны понимать, что такое прямоугольный параллелепипед. Речь идет вовсе не о том, чтобы они представляли себе прямоугольный параллелепипед как нечто похожее на коробку или брусок. У учащихся должны быть сформированы первоначальные пространственные представления: поверхность и каркас прямоугольного параллелепипеда, четверки параллельных ребер, измерения прямоугольного параллелепипеда, равенство противоположных граней, развертка и т. д.
Каким бы простым телом ни казался параллелепипед, учащимся требуется определенное время на знакомство с ним. Каждый ученик должен иметь на уроке и дома какую-нибудь модель параллелепипеда. При этом важно, чтобы учащиеся не просто рассматривали параллелепипед, но и задействовали при его изучении и другие виды восприятия. Так, они должны не только глазами, но и пальцами провести по его ребрам, «ощутить», что в каждой вершине сходятся три ребра. Взяв параллелепипед в руки так, чтобы в каждой его вершине оказалось по одному пальцу, они увидят и ощутят мышечно, что число задействованных пальцев равно 8, следовательно, у параллелепипеда 8 вершин. Аналогично можно сосчитать и число его граней. Такое использование при восприятии тела различных органов чувств помогает создать более полный его мыслительный образ [19].
Результатом подобного изучения параллелепипеда должно стать осознание целого ряда особенностей. Все грани прямоугольного параллелепипеда – прямоугольники, и всего их шесть; напротив друг друга расположены равные грани, таких пар равных граней три; в каждой вершине сходится три неравные грани. Аналогичные выводы можно сделать и о ребрах: всего их 12; есть равные ребра – три группы по четыре ребра; в каждой вершине сходится три ребра разной длины. Наконец, вершины: их 8, по четыре вершины в каждой из противолежащих граней. Такое всестороннее и внимательное изучение параллелепипеда, однако, не предполагает, что предлагаемые далее задания выполняются учащимися в умственном плане без опоры на модели и рисунки.