Исходя из требований программы, различные авторские коллективы предлагают ряд учебников геометрии 10-11 классов. Рассмотрим некоторые из них.
Учебник [7] является продолжением и развитием учебника для 7-9 классов того же авторского коллектива. Изложение теоретического материала более строгое, чем на предыдущей ступени обучения. Теоретические тексты кратки и доступны. Система упражнений последовательна, содержит задачи разного уровня сложности, примеры решения наиболее важных задач, причем данные решения наиболее трудных задач потребуются ученикам как опорные, при доказательстве теорем, следствий из теорем и т. д. Имеются дополнительные задания, которые идут после всей главы. Для решения этих задач необходимо знать не только материал изученной главы («Объемы тел»), но и применить знания, умения и навыки, полученные при изучении других тем. В процессе их решения очень хорошо развивается логика, воображение. Другими словами можно сказать, что при решении дополнительных задач у учащихся развиваются три качества: пространственное воображение, практическое понимание и логическое мышление.
На изучение темы «Объемы тел» отводится 19 ч. Входят такие разделы, как: объем прямоугольного параллелепипеда, объемы прямой призмы и цилиндра, объемы наклонной призмы, пирамиды и конуса, объем шара и площадь сферы, объемы шарового сегмента, шарового слоя и шарового сектора.
Основная цель – продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов. В курсе стереометрии понятие объема вводится по аналогии с понятием площади плоской фигуры, и формулируются основные свойства объемов. Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства, так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливаются, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усваиваться в процессе решения задач.
Основная теория в начале курса стереометрии изучается с опорой на геометрические тела, что повышает доступность материала, а значит, и результативность обучения.
Учебник И. Ф. Шарыгина [11] реализует авторскую наглядно-эмпирическую концепцию построения школьного курса геометрии. Его характеризует отказ от аксиоматического метода и акцент на использование наглядных методов в процессе построения теории и решения задач. В учебнике нетрадиционно изложены многие необходимые теоретические факты. Их доказательства оригинальны и, что немаловажно, красивы. Учебные тексты написаны хорошим литературным языком.
Теоремы в учебнике нацелены не столько на «прохождение программы», сколько на создание необходимого запаса сведений для решения задач. Например, весьма интересно изложен раздел «Объемы», в котором имеются теоремы, обычно не рассматриваемые в школе. Доказательства этих теорем поучительны сами по себе, а владение ими дает запас фактов и приемов, позволяющих решать довольно трудные задачи.
Система упражнений в учебнике позволяет реализовать идею уровневой дифференциации. Здесь есть задачи, отмеченные звездочкой, предназначенные для углубленной подготовки; специально выделены полезные (П), важные (В) и трудные (Т) задачи.
Учебник И. М. Смирновой [9] для естественнонаучного профиля является одним из нескольких учебных пособий, написанных И. М. Смирновой и В. А. Смирновым. Эти учебники объединяет единая концепция авторского подхода к геометрии как науке и учебному предмету, а их отличия связаны с учебными задачами, которые ставятся в том или ином профиле. Так учебник для естественнонаучного профиля позволяет углубить знания учащихся по геометрии, в нем расширен материал о многогранниках, например, имеются теорема Эйлера, учебные пункты, посвященные правильным, полуправильным, звездчатым многогранникам, многогранникам, вписанным в сферу, описанным около сферы и т. п. Больше внимания в учебнике уделено изучению кривых и поверхностей, рассматриваются аналитические способы задания фигур. Наряду с декартовыми координатами в пространстве используются полярные и сферические координаты.
Учебник [6] написан кратко и просто, в нем реализован аксиоматический подход к построению курса. В теоретической части учебника авторы выделяют основные теоремы, из которых остальные получаются как следствия. Например, в первом параграфе выводится формула объема прямого цилиндра, а затем представление объема интегралом. Но после параграфа идут задачи на объем прямой призмы. Таким образом, ученики сами выводят формулы. В учебнике обращается внимание на практическое применение геометрии, на ее связь с искусством, архитектурой. Авторы представляют геометрию как живую развивающуюся науку, ведущую свою историю от египетских землемеров и геометров Древней Греции. Изложение теоретического материала строгое. Четкая структура, высокая научность, доступность изложения, простота и краткость – отличительные черты этого учебника. Авторы представляют геометрию, как науку, тесно связанную с окружающим миром. Появлению абстрактного понятия предшествует реальная картина, которая аргументирует необходимость этой абстракции.