Необходимо учитывать два противоположных направленных процесса, сопровождающие обучение. Первый процесс - постепенное возрастание количества классов неравенств и приемов их решения, различных преобразований применяемых в решении. За счет увеличения объема материал как бы дробится, изучение его новых фрагментов затрудняется наличием уже изученных, Второй процесс установление разнообразных связей между различными классами уравнений, выявление все более общих классов, закрепление все более обобщенных типов преобразований, упрощение описания и обоснования решений.
В результате взаимодействия этих процессов изученный материал должен представляться учащимся в сравнительно компактном виде, не затрудняющем, а, наоборот, облегчающем усвоение нового. Необходимость установления такого взаимодействия обусловливает применяемые в линии уравнений и неравенств методические приемы, в частности распределение материала обучения по ступеням.
Можно выделить четыре основные ступени: независимое изучение основных типов неравенств и их систем; постепенное расширение количества изученных классов неравенств и их систем; формирование приемов решения и анализа неравенств и их систем, имеющих широкую область применимости; синтез материала линии уравнений и неравенств. Дадим характеристику этих ступеней.
Изучение основных типов неравенств и их систем.
Среди всех изучаемых в курсе математики типов неравенств и систем выделяется сравнительно ограниченное количество основных типов, к их числу можно отнести: линейные неравенства с одним неизвестным, квадратные неравенства, простейшие иррациональные и трансцендентные неравенства.
Эти классы изучаются с большой тщательностью, для них указывается и доводится до автоматизма выполнение алгоритмов решения, указывается форма, в которой должен быть записан ответ.
Введение каждого нового основного класса неравенств сопровождается введением новой области числовых выражений, входящих в стандартную форму записи ответа. Вместе с тем, когда материал усвоен, целесообразно изредка предлагать и такие задания, в которых могут возникать нестандартные для данного класса неравенств ответы.
Каждый из основных классов неравенств и их систем требует проведения исследования зависимости результата от коэффициентов, поскольку множества решений у заданий, входящих в один и тот же класс, могут существенно различаться. Для неравенств и их систем в качестве меры различия обычно берутся простейшие особенности геометрических фигур, изображающих их множества решений на координатной прямой или плоскости. Изредка требуется выяснить положительность или отрицательность корней (если неизвестное одно), принадлежность решений уравнений с двумя неизвестными одной из координатных четвертей.
Формирование общих приемов решения и исследования неравенств
В ходе изучения неравенств становится все более заметной роль общих, универсальных средств решения и исследования. Такие обобщенные средства, приемы можно разделить на три группы.
Первая группа состоит из логических методов обоснования решения. Используя эти методы (например, равносильные преобразования или логическое следование), переходят от исходных неравенств к новым. Такие переходы делаются до тех пор, пока не получаются задания, относящиеся к известным классам.
Вторая группа состоит из вычислительных приемов, посредством которых производятся упрощения одной из частей данного неравенства, проверка найденных корней при помощи подстановки вместо неизвестного, различные промежуточные подсчеты в т.д. Возможности проведения численных расчетов резко возрастают при использовании вычислительной техники.
В третью группу входят наглядно-графические приемы. Большинство этих приемов используют в качестве основы координатную прямую либо координатную плоскость.