Страница 1

Рассмотрим изучение темы «Многогранники» по учебнику Атанасяна. Этот учебник предназначен для общеобразовательной школы. Остановимся на нем подробнее.

Данная тема изучается в главе 3. На изучение ее отводится 12 уроков. Ниже приведено поурочное планирование в таблице.

Номер урока

Содержание учебного материала

1-4

§1. Понятие многогранника. Призма.

Понятие многогранника. Призма. Площадь поверхности призмы. ( п.25-27)

5-9

§2. Пирамида

.

Пирамида. Правильная пирамида. Усеченная пирамида. Площадь поверхности пирамиды. (п.28-30)

10

§3. Правильные многогранники.

Симметрия в пространстве. Понятие правильного многогранника. Элементы симметрии правильных многогранников. (п. 31-33)

11

Контрольная работа.

12

Зачет по теме.

Еще до изучения темы «Многогранники» учащиеся знакомятся с их простейшими видами в главе 1 §4 «Тетраэдр и параллелепипед». На их изучение отводится 5 часов. Понятия тетраэдра и параллелепипеда вводятся в данной главе для того, чтобы рассмотрение их свойств, построение сечений способствовали углублению понимания вопросов взаимного расположения прямых и плоскостей, поэтому необходимо, чтобы решение задач сопровождалось ссылками на аксиомы, определения и теоремы.

При объяснении понятий тетраэдра и параллелепипеда необходимо подчеркнуть, что многоугольник в пространстве представляет собой плоскую поверхность, а тетраэдр и параллелепипед – поверхности, составленные из плоских поверхностей (многоугольников).

Для формирования у учащихся представления о способах изображения на чертеже тетраэдра и параллелепипеда полезно с помощью диапроектора показать на экране различные проекции их каркасных моделей. Полезно также обсудить простейшие свойства параллельной проекции.

В результате изучения параграфа учащиеся должны уметь объяснить, что называется тетраэдром, параллелепипедом, указывать и называть на моделях и чертежах элементы этих многогранников; знать свойства граней и диагоналей параллелепипеда; уметь изображать тетраэдр и параллелепипед, строить их сечения.

Основная цель темы «Многогранники» - дать учащимся систематические сведения об основных видах многогранников.

Учащиеся уже знакомы с такими понятиями, как тетраэдр и параллелепипед, и теперь им предстоит расширить представления о многогранниках и их свойствах. В учебнике нет строгого математического определения многогранника, а приводится лишь некоторое описание, так как строгое определение громоздко и трудно не только для понимания учащимися, но и для его применения. Такое наглядное представление о геометрических телах вполне достаточно для ученика на первичном уровне рассмотрения понятия. Ниже, в п. 26, рассматривается определение геометрического тела, в связи с чем вводится ряд новых понятий. Этот материал могут прочитать самостоятельно наиболее подготовленные учащиеся, проявляющие повышенный интерес к математике.

На уроке, используя модели многогранников (куб, параллелепипед, тетраэдр, призма), необходимо назвать учащимся их элементы: вершины, грани, ребра, диагонали граней и диагонали рассматриваемых тел. Важно, чтобы школьники усвоили эти понятия, что позволит правильно понимать формулировки задач, не смешивая названия различных элементов в процессе их решения. После этого вводится понятие выпуклого и не выпуклого многогранников; обязательно учащимся показать примеры невыпуклых многогранников.

Призма А1 А2… Аn В1 В2 …Вn определяется как многогранник, составленный из двух равных многоугольников А1 А2… Аn и В1 В2 …Вn , расположенных в параллельных плоскостях, и n-параллелограммов А1 А2 В2 В1, …, Аn А1 В1 Вn. Далее вводятся определения элементов призмы, с помощью моделей разъясняются понятия прямой призмы, наклонной призмы, правильной призмы. Необходимо обратить внимание учащихся на то, что четырехугольная призма – это знакомый им параллелепипед. У произвольного параллелепипеда все шесть граней – параллелограммы, а боковые грани – прямоугольники, у прямоугольного параллелепипеда все шесть граней – прямоугольники. При изучении площади поверхности призмы доказывается теорема о площади боковой поверхности прямой призмы.

Страницы: 1 2