Страница 3

обозначить цифрами порядковые места значений причинного фактора (колонка "а"); естественно, что раз значения этого фактора расположены в убывающем порядке, то цифры порядковых мест будут расположены в возрастающем порядке; если количественные показатели того или иного фактора оказываются одинаковыми, то их порядковые места обозначаются тем числом, которое составляет среднюю арифметическую величину их порядковых мест;

обозначить цифрами порядковые места значений следственного фактора (колонка "б");

подсчитать число коррелируемых парных значений (n); в данном примере их 10;

вычислить разность рангов (d = а - б) с сохранением соответствующего знака; в данном примере: 1 - 2 = - 1 и т.д.;

вычислить квадрат разности рангов (d2); в данном примере: - 12 = 1 и т.д.;

вычислить сумму квадратов разности рангов (Sd2); в данном примере она равна 32;

вычислить коэффициент корреляции рангов ρ по формуле:

произвести оценку вычисленного коэффициента, т.е. установить, во-первых, существует ли статистически достоверное различие между полученным значением коэффициента и нулем; во-вторых, проявятся ли выявленные связи (или их отсутствие), если коэффициент корреляции будет рассчитываться по тем же самым признакам, но на других группах исследуемых или на тех же самых группах, но в других условиях; значимость коэффициента корреляции рангов определяется двумя путями:

а) путем сравнения с принятыми уровнями меры количественной связи; в данном примере величина коэффициента корреляции, равная 0,807, говорит о сильной мере количественной связи;

Критические значения коэффициентов корреляции рангов Спирмена (ρ)

Число

коррелируемых

пар, n

Уровень

значимости, P

0,05

0,01

4

1,000

-

5

0,900

1,000

6

0,329

0,943

7

0,714

0,893

8

0,643

0,833

9

0,600

0,783

10

0,564

0,746

12

0,506

0,712

14

0,456

0,645

16

0,452

0,601

18

0,399

0,564

20

0,377

0,534

22

0,359

0,508

24

0,343

0,485

26

0,329

0,465

28

0,317

0,448

30

0,306

0,432

Страницы: 1 2 3 4 5 6 7