Страница 1

В соответствии с целями изучения данного элективного курса был проведен отбор содержания.

Раздел 1. Элементы комбинаторики.

Исторические и занимательные комбинаторные задачи (фигурные числа, магические и латинские квадраты). Основные комбинаторные методы: перебор всех возможных вариантов (систематический перебор, перебор с ограничениями), полный граф, дерево вариантов (граф-дерево), таблица вариантов, правила произведения и суммы. Факториал. Перестановки. Размещения. Сочетания. Формулы для подсчёта числа перестановок, размещений и сочетаний. Треугольник Паскаля. Бином Ньютона. Комбинированные задачи.

Ученические проекты:

· «Из истории комбинаторики».

· «Задание для друга» (по бесформульным методам).

· «Бином Ньютона».

· «Комбинаторика вокруг нас».

Раздел 2. Элементы теории вероятностей.

Испытания и события. Невозможные, достоверные и случайные события. Виды случайных событий (совместные и несовместные, равновозможные и неравновозможные, противоположные, независимые), действия над случайными событиями (сумма, произведение). Полная группа. Эксперименты и их исходы. Классическое определение вероятности. Решение вероятностных задач с помощью формул комбинаторики. Относительная частота. Статистическая вероятность. Геометрические вероятности. Теоремы сложения и умножения вероятностей. Формула полной вероятности. Вероятность гипотез, формула Бейеса. Формула Бернулли. Закон больших чисел.

Ученические проекты:

· Доклады об ученых, стоящих у истоков теории вероятности.

· «Парадоксы».

· «Кому нужна теория вероятностей?».

Раздел 3. Случайные величины.

Случайная величина. Дискретная и непрерывная случайные величины. Закон распределения вероятностей ДСВ. Математическое ожидание ДСВ. Дисперсия ДСВ. Среднее квадратическое отклонение. Метод наименьших квадратов.

Ученические проекты:

· «Современные азартные игры».

· «Моделирование методом Монте-Карло».

Раздел 4. Элементы математической статистики.

Предмет статистики. Основная задача и основной метод статистики. Статистическая информация и способы её представления: простой статистический ряд (выборка), таблицы частот, таблицы относительных частот, столбчатые диаграммы, полигоны частот, круговые диаграммы, гистограммы. Простейшие статистические исследования. Этапы статистических исследований. Опрос общественного мнения как пример сбора, обработки, представления и интерпретации данных. Статистические характеристики: среднее значение, мода, медиана, размах, выборочная дисперсия, выборочное среднее квадратичное отклонение. Определение линий регрессии методом наименьших квадратов для двумерных выборок.

Ученические проекты:

· «Развитие математической статистики».

· Статистическое исследование на заданную тему.

В процессе обучения учащиеся приобретают умения:

· подсчитать количество всевозможных комбинаций элементов, образованных определённому правилу;

· решать задачи с помощью графов;

· определять типы случайных событий;

· вычислять вероятность события, пользуясь простейшими свойствами вероятности;

· проводить эксперименты со случайными исходами;

· извлекать информацию из таблиц и диаграмм, анализировать её;

· записывать исходные данные в таблицу, используя их составлять диаграммы;

· регистрировать результаты наблюдений и делать выводы;

· выполнять математические, процентные расчёты.

Учитывая значимость и назначение курса в каждом из профилей определим структуру курса и составим учебный план.

РАЗДЕЛ

ТЕМА ЗАНЯТИЯ

КОЛ-ВО ЧАСОВ

 

Матема-тический профиль

Гумани-тарный профиль

Экономи-ческий профиль

 

1

Элементы комбинато-рики

1. Комбинаторные задачи. Перебор всех возможных вариантов.

2. Подсчет вариантов с помощью графов, таблица вариантов.

3. Кортежи. Правила произведения и суммы.

4. Перестановки.

5. Размещения.

6. Сочетания.

7. Самостоятельная работа

8. Некоторые свойства сочетаний.

9. Свойство сочетаний =+ и треугольник Паскаля.

10. Бином Ньютона.

11. Решение задач.

12. «Комбинаторика вокруг нас» (итоговое).

1

2

2

2

2

2

1

1

1

1

2

2

1

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

2

2

 

Всего

19

12

14

 

2

Элементы теории ве-роятностей

1. Предмет теории вероятностей. События.

2. Виды случайных событий.

3. Эксперименты и их исходы.

4. Классическое определение вероятности.

5. Решение вероятностных задач с помощью формул комбинаторики.

6. Статистическая вероятность.

7. Геометрическая вероятность.

8. Теорема сложения вероятностей.

9. Теорема умножения вероятностей.

10. Следствия теорем сложения и умножения.

11. Формула Бернулли. Закон больших чисел.

12. Решение задач.

13. Самостоятельная работа.

14. «Кому нужна теория вероятностей?» (итоговое).

2

1

1

1

1

1

1

2

2

2

1

2

1

2

1

1

1

1

1

1

1

1

1

1

1

2

2

1

1

1

1

1

1

1

2

1

1

2

1

2

 

Всего

20

13

18

18

3

Случайные величины

1. Понятие случайной величины. Закон распределения вероятностей дискретной случайной величины.

2 Математические операции над случайными величинами.

3 Числовые характеристики ДСВ. Математическое ожидание.

4 Дисперсия ДСВ. Среднее квадратическое отклонение.

5 Метод наименьших квадратов.

6. Зачет.

2

1

2

2

1

2

1

1

1

1

1

1

2

1

1

1

 

Всего

10

4

7

 

4

Элементы математической статистики

1. Выборочный метод.

2. Числовые характеристики статистических рядов.

3. Статистические исследования. Этапы статистического исследования.

4. Определение линий регрессии методом наименьших квадратов для двумерных выборок.

5. Исследовательские проекты и их защита.

3

2

1

2

2

2

1

1

1

3

2

1

2

2

 

Всего

10

5

10

 

Итого

60

34

 
Страницы: 1 2