Данный учебник предназначен для классов и школ с математической специализацией, он дает богатую математическую информацию, развивает ученика, но является достаточно трудно усваиваемым. В учебнике рассматриваются такие темы, которые в основной школе не доступны даже для «сильных» учеников, например, сферическая геометрия.

Отметим особенности изучения многогранников в данном учебнике. Во-первых, многогранники изучаются после круглых тел. Во-вторых, при изучении многогранника и его элементов прослеживается связь с многоугольником. Вследствие чего возможны две последовательности изложения темы: 1) обобщить понятие многоугольника, затем разобрать аналогичные вопросы в пространстве; 2) пользуясь §21 учебника, дать сначала определение многогранника, далее обобщить понятие многоугольника. Особенностью является введение двух определений призмы (как в учебниках, рассмотренных выше, и как цилиндр, в основании которого лежит многоугольник), причем доказывается равносильность этих определений. Аналогично дается другое определение пирамиде: как конус с многоугольником в основании. Пункт 23.6 содержит раздел о триангулировании многогранника, и в нем дается другое, конструктивное определение многогранника. §24 «Выпуклые многогранники» впервые излагается в столь серьезном виде, рассматривается вопрос равносильности двух определений выпуклого многогранника. Изложение темы «Правильные многогранники» также отличается от ее изложения в учебниках по геометрии других авторских коллективов: сначала показываются пять типов правильных многогранников, построением доказывается, что все пять типов правильных многогранников существуют, и только после этого доказывается, что других правильных выпуклых многогранников быть не может. Обычно же после определения сразу доказывалась теорема, а существование показывалось позже, что усложняло методику рассказа.

Таким образом, учебник содержит очень богатый теоретический материал по многогранникам, которого нет в других учебниках по геометрии, также он может быть использован как учебник для дополнительного изучения в основной школе. Ниже в таблице приведено примерное поурочное планирование материала. [3],[20]

№ урока

Содержание учебного материала

1-2

Обобщение понятие многоугольника. Многогранник.

3-5

Призма, параллелепипед. Упражнения.

6-10

Пирамида. Виды пирамид. Упражнения.

11-13

Выпуклые многогранники.

14-16

Теорема Эйлера. Развертка выпуклого многогранника.

17-19

Правильные многогранники.

Подводя итоги выше сказанного, можно сказать, что во всех учебниках при изучении многогранников рассматривается практически одни и те же основные темы: определение многогранника, выпуклые многогранники, призма, пирамида, правильные многогранники. Разница лишь в глубине изучения этих вопросов: в гуманитарных классах [28] тема изучается более поверхностно, практически без доказательств, в классах с углубленным изучением математики [3] данный вопрос рассматривается глубоко, с научными обоснованиями. Также есть различия в некоторых дополнительных темах, например, полуправильные и звездчатые многогранники рассматриваются только в [28]. В настоящее время во многих общеобразовательных школах идет обучение по учебнику [4], поэтому при выборе содержания можно опираться на него.