Допустим, необходимо изучить эффективность нового метода развития силы. Для эксперимента потребуется сформировать две группы исследуемых, предположим, по 10 человек. Однако судить об эффективности нового метода позволительно будет только в том случае, если удастся уравнять исходные уровни развития силы. Достичь этого можно тремя путями.
1. Подобрать 20 человек с одинаковым уровнем развития силы (разумеется, остальные характеристики также должны быть одинаковыми, т. е. пол, возраст, спортивный разряд и т.п.). В организационном отношении это сделать очень трудно, а иногда невозможно (например, при исследовании спортсменов высокой квалификации).
2. Подобрать людей с примерно одинаковым уровнем развития силы, но прирост ее оценивать не в абсолютных, а в относительных (процентных) показателях. В организационном отношении отобрать таких людей не составит больших трудностей, но при анализе результатов могут возникнуть осложнения. Дело в том, что ценность прироста результатов в этом случае зависит от исходного уровня показателей силы: чем выше он был, тем больше ценность прироста. Поэтому надо будет рассчитать сравнительную ценность прироста результата у каждого исследуемого. Например, специалисты по спринту считают (З. Шенке, 1973), что улучшение результата в беге на 100 м с 10,1 до 10,0 сек. можно приравнять к улучшению результата с 12,0 до 11,0 сек., а сокращение времени бега с 10,0 до 9,9 сек. соответствует улучшению результата с 20,0 до 11,0 сек. Следовательно, в первом случае 0,1 сек. приравнивается к 1,0 сек., а во втором случае - к 9,0 сек.
3. Подобрать равноценные пары в каждую из сравниваемых групп. При этом следует учитывать идентичные исходные данные на уравниваемой основе. В нашем примере - в одной из групп спортсмену с определенными силовыми показателями подобрать в другой группе спортсмена с такими же данными. Схематично это может быть представлено следующим образом.
По схеме видно, что I должен быть обязательно равен по исходному силовому показателю с 1-м, но может быть различен со II, III-м и т. д., со 2, 3-м и т. д. В то же время средние исходные уровни показателей в обеих группах будут одинаковыми.
Экспериментальная группа Контрольная группа
I = 1
II = 2
III = 3
Подобное уравнивание называется уравниванием на одной основе и в организационном отношении не принесет больших осложнений. Приведенный пример является наиболее простым случаем уравнивания. Однако задачи эксперимента могут потребовать уравнивания на двух, трех основах. Такая необходимость возникает, например, при изучении комплексного развития двигательных качеств, допустим, силы, выносливости и быстроты. В этом случае комплектование опытных групп путем уравнивания основ может иметь несколько вариантов.
1-й вариант. Каждому исследуемому экспериментальной группы подбирают в пару другого, равного по силе, выносливости и быстроте (по схеме 1=1). Вариант наиболее предпочтительный, так как позволяет точнее проследить взаимодействие двигательных качеств, но очень трудный в организационном отношении из-за подбора равноценных исследуемых.
2-й вариант. Каждому исследуемому экспериментальной группы подбирают в пару несколько таких, из которых один равен ему по силе, второй - по выносливости, третий - по быстроте (например, по силе 1=1, по выносливости 1=3, по быстроте 1=9). Сочетания могут быть самые разнообразные, включая и такие, при которых уравнивание произойдет и на двух и на трех основах.