1. Формулировки многих определений (теорем, аксиом) учащимся понятны, легко запоминаются после небольшого числа повторений, поэтому целесообразно в начале предложить их запомнить, а затем научить применять к решению задач.
Метод, при котором процессы запоминания определений и формирования навыков их применения протекают у учащихся неодновременно (раздельно), называют раздельным.
Раздельный метод используется при изучении определений хорды, трапеции, чётной и нечётной функции, теорем Пифагора, признаков параллельности прямых, теоремы Виета, свойств числовых неравенств, правил умножения обыкновенных дробей, сложения дробей с одинаковыми знаменателями и т.д.
Методика:
а) учитель формулирует новое определение;
б) учащиеся класса для запоминания повторяют его 1-3 раза;
в) отрабатывается на упражнениях.
2. Компактный метод состоит в том, что учащиеся читают по частям математическое определение или предложение и по ходу чтения одновременно выполняют упражнение.
Читая формулировку несколько раз, они попутно запоминают её.
Методика:
а) подготовка математического предложения к применению. Определение разбивается на части по признакам, теорема – на условие и заключение;
б) образец действий, предлагаемый учителем, который показывает, как работать с подготовленным текстом: читаем его по частям и одновременно выполняем упражнения;
в) учащиеся по частям читают определение и одновременно выполняют упражнения, руководствуясь подготовленным текстом и образцом учителя;
Например: определение биссектрисы в пятом классе:
1) введение понятия проводится методом целесообразных задач на модели угла;
2) выписывается определение: “Луч, выходящий из вершины угла и делящий его на две равные части, называется биссектрисой угла ”;
3) выполняется задание: указать, какие из линий на чертежах являются биссектрисами углов (равные углы обозначаются одинаковым числом дуг).
На одном из чертежей учитель показывает применение определения (см. дальше);
4) работа продолжается учениками.
3. Комбинация раздельного и компактного метода: после вывода нового правила оно повторяется 2-3 раза, а затем учитель требует в процессе выполнения упражнений формулировать правило по частям.
4. Алгоритмический метод используется для формирования навыков применения математических предложений.
Методика: математические предложения заменяются алгоритмом. Читая поочередно указания алгоритма, ученик решает задачу. Таким образом у него формируется навык применения определения, аксиомы и теоремы. При этом допускается либо последующее заучивание определения, либо прочтение вместе с алгоритмом и самого определения.
Основные этапы метода:
а) подготовка к работе списка указаний, который либо дается в готовом виде, с последующим разъяснением, либо учащиеся подводятся к его самостоятельному составлению;
б) образец ответа учителя;
в) аналогичным образом работают ученики.
Раздельный и компактный методы применяются при изучении определений. Алгоритмический может быть применен только при изучении трудно усваиваемых определений (например, необходимые и достаточные условия). Наиболее широко алгоритмический метод используется при формировании навыков решения задач.