Страница 2

Паралелограм: OB

AD

Закрепление: решение задач №4-23, стр.96-97, Геометрия 7-11, Погорелов.

Перспективное значение:

а) используется при изучении и определении прямоугольника и ромба;

б) принцип параллельности и равенства отрезков, заключённых между параллельными прямыми в теореме Фалеса;

в) понятие параллельного переноса (вектора);

г) свойство параллелограмма используется при выводе площади треугольника;

д) параллельность и перпендикулярность в пространстве; параллелепипед; призма.

Абстрактно-дедуктивный метод

Сущность:

а) определение понятия: - квадратное уравнение;

б) выделение существенных свойств: х – переменная; a, b, c – числа; а≠0 при

в) конкретизация понятия: - приведенное; примеры уравнений

г) упражнения: на распознавание, на конструирование;

д) изучение свойств, не включённых в определение: корни уравнения и их свойства;

е) решение задач.

В школе абстрактно-дедуктивный способ применяется тогда, когда новое понятие полностью подготовлено изучением предыдущих понятий, в том числе изучением ближайшего родового понятия, а видовое отличие нового понятия весьма простое и понятное учащимся.

Например: определение ромба после изучения параллелограмма.

Кроме того, указанный метод используется:

1) при составлении “родословной” определения понятия:

Квадрат – это прямоугольник, у которого все стороны равны.

Прямоугольник – это параллелограмм, у которого все углы прямые.

Параллелограмм – это четырёхугольник, у которого противолежащие стороны параллельны.

Четырёхугольник – фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков.

Иначе говоря, родословная представляет собой цепочку понятий, построенных через обобщения предыдущего понятия, финалом которой является неопределяемое понятие (напомним, что в курсе школьной геометрии к таковым относятся точка, фигура, плоскость, расстояние (лежать между));

2) классификация;

3) применяется к доказательствам теорем и решению задач;

4) широко используется в процессе актуализации знаний.

Рассмотрим этот процесс, представленный системой задач:

а) Дан прямоугольный треугольник со сторонами 3см и 4см. Найти длину медианы, проведённой к гипотенузе.

б) Доказать, что медиана, проведённая из вершины прямого угла треугольника, равна половине гипотенузы.

в) Доказать, что в прямоугольном треугольнике биссектриса прямого угла делит пополам угол между медианой и высотой, проведёнными к гипотенузе.

г) На продолжении наибольшей стороны АС треугольника АВС отложен отрезок СМ, равный стороне ВС. Доказать, что АВМ тупой.

В большинстве случаев в школьном преподавании применяется конкретно-индуктивный способ. В частности, таким методом вводятся понятия в пропедевтических циклах начал алгебры и геометрии в 1-6 классах, причём многие определяющие понятия вводятся описательно, без строгих формулировок.

Незнание учителем различных методов введения определений приводит к формализму, который проявляется следующим образом:

а) учащиеся затрудняются применить определения в непривычной ситуации, хотя и помнят его формулировку.

Например: 1) считают функцию - чётной, т.к. “cos” – чётная;

2) - не понимают связь между монотонностью функции и решением неравенства, т.е. не могут применять соответствующие определения, в которых основной приём исследования состоит в оценке знака разности значений функции, т.е. в решении неравенства.

б) учащиеся обладают навыками решения задач какого-либо типа, но не могут объяснить, на основании каких определений, аксиом, теорем они выполняют те или иные преобразования.

Например: 1) - преобразовать согласно этой формуле и 2) представьте, что на столе – модель четырёхугольной пирамиды. Какой многоугольник будет основанием этой пирамиды, если модель положить на стол боковой гранью? (четырёхугольник).

Страницы: 1 2 3